两点式方程公式
两点式方程公式用于求取过两点且与坐标轴不平行的直线方程,公式如下:

```
y - y1 = (y2 - y1) / (x2 - x1) (x - x1)
```
使用步骤:
1. 已知两点坐标,分别为 (x1, y1) 和 (x2, y2)。
2. 将两点坐标代入公式中,其中 (x1, y1) 为已知点,(x2, y2) 为变量点。
3. 化简公式至 y 等于斜率与 x 的和加上截距的标准形式,即 y = mx + c。
示例:
求过点 (2, 3) 和 (4, 7) 的直线方程。
代入公式:y - 3 = (7 - 3) / (4 - 2) (x - 2)
化简:y - 3 = 4 / 2 (x - 2)
标准形式:y = 2x + 1
拓展:
截距式方程
截距式方程公式用于求取直线与 y 轴交点的坐标,公式如下:
```
y = mx + c
```
其中 m 为斜率,c 为截距。
斜率截距式方程
斜率截距式方程公式将斜率和截距直接表示在方程中,公式如下:
```
y = mx + b
```
其中 m 为斜率,b 为截距。
评论